EXISTENCE OF A UTILITY IN INFINITE DIMENSIONAL PARTIALLY ORDERED SPACES*

by YAKAR KANNAI

ABSTRACT

An example is given of a preference order on a space of denumerable algebraic dimension that has no utility, and necessary and sufficient conditions for the existence of utilities in various linear spaces are given.

1. Introduction. "Utility" is a numerical function representing a preference order, which is useful in solving optimization problems. Until recently, utility theory was restricted to complete preference orders; the extension to orders that are not necessarily complete was made in [1], but the results of that paper are restricted to finite-dimensional spaces of alternatives. The infinite-dimensional case is important for certain types of economic models, e.g. those involving an infinite time horizon or continuous time, commodities that may be available in a continuum of quantities, continua of prices or of geographic locations, etc. It is the object of this paper to investigate to what extent the results of [1] can be extended to infinite-dimensional spaces of alternatives. In particular, a problem raised in [1] will be answered.

Let X be a real linear space. We assume that on X there is defined a transitive and reflexive relation called preference-or-indifference and denoted by \gtrsim . If $x \gtrsim y$ and $y \gtrsim x$, we shall say that x is indifferent to y and write $x \sim y$. If $x \succ y$ but not $x \sim y$, we shall say that x is preferred to y and write $x \succ y$. The relation \gtrsim will be called a partial order. (We shall not assume that \gtrsim is complete).

We assume that the following conditions hold:

(1.1) $x \gtrsim y$ implies $x + z \gtrsim y + z$ for all $z \in X$;

(1.2) $x \gtrsim y$ and $\alpha > 0$ implies $\alpha x \gtrsim \alpha y$;

(1.3) x > kz for all positive integers k implies not z > 0.

A real linear functional u defined on all X will be called a utility if $x \geq y$ implies $u(x) \geq u(y)$, and $x \succ y$ implies u(x) > u(y). A vector valued linear function v defined on all X will be called a multi-dimensional utility if $x \geq y$ implies $v(x) \geq v(y)$ and $x \succ y$ implies $v(x) \succ v(y)$. Here the order on the vector space

Received November 27, 1963.

^{*} Research partially supported by the U.S. Office of Naval Research under contract No. N 62558-3586.

YAKAR KANNAI

(the space of values of v) is the lexicographic order, i.e., the vector $v = (v_1, ..., v_n)$ is preferred or indifferent to $w = (w_1, ..., w_n)$ if v = w or if $v_i > w_i$ for the first coordinate *i* such that $v_i \neq w_i$. (The lexicographic order satisfies (1.1), (1.2) but not(1.3)).

Aumann [1] proved that if X is a finite-dimensional Euclidean space, the assumptions (1.1)-(1.3) imply the existence of a utility. He gave an example of a partial order satisfying these assumptions without having any utility, if X is the set of all infinite sequences of real numbers, and raised the problem of the existence of a utility if X has countable dimensionality (algebraic dimensionality).

An example will be given here of an order on the space with countable dimensionality which does not have even a multi-dimensional (finite-dimensional) utility and, of course, does not have a (numerical) utility. A necessary and sufficient condition for the existence of a utility in the countable dimensional case will be given, and a sufficient condition for the existence of a utility if X is a seperable normed space will also be given.

The author wishes to thank Mr. M. Perles for a number of very helpful conversations, and in particular for the present form of the example in section 3.

2. Some preliminaries. The following are simple consequences of the assumptions (1.1)-(1.3). (We denote the zero element of X by 0):

- (2.1) $x \gtrsim y$ if and only if $x y \gtrsim 0$; $x \succ y$ if and only if $x - y \succ 0$;
- (2.2) $x \gtrsim y$ and $z \gtrsim y$ and $0 < \alpha < 1$ imply $x + (1 \alpha)z \gtrsim y$; $x \succ y$ and $z \succ y$ and $0 < \alpha < 1$ imply $x + (1 - \alpha)z \succ y$;
- (2.3) $x \gtrsim 0$ if and only if $-x \preceq 0$, x > 0 if and only if $-x \prec 0$.

Set $T = \{x : x > 0\}, S = \{x : x \gtrsim 0\}.$

- (2.4) T and S are convex cones, $0 \notin T$, $0 \in S$ and $T \subset S$. If $A, B \subset X$, set $A + B = \{a + b; a \in A, b \in B\}, -A = \{x : -x \in A\}$
- (2.5) $\{x: x \sim 0\} = S \cap (-S)$ and is a linear subspace of X.

We remark that a real linear functional u defined on X so that $u(x) \ge 0$ if $x \in S$, u(x) > 0 if $x \in T$, is a utility. (It is obvious that a utility satisfies this). Similarly, a vector valued linear function v defined on X is a multi-dimensional utility if and only if $x \in S$ implies $v(x) \gtrsim 0$, $x \in T$ implies v(x) > 0 (preference in the lexicographic order).

THEOREM A. A necessary condition for the existence of a utility for the partial order \gtrsim is that in every linear topology on X in which every linear functional defined on X is continuous,

(2.6) $(-T) \cap \overline{S} = \emptyset$ (which implies of course that $(-T) \cap \overline{T} = \emptyset$).*

^{*} A superior bar denotes closure.

Proof. Assume, on the contrary, that there is a point $x \in (-T) \cap \overline{S}$. From (2.3) it follows that u(x) < 0. In every neighbourhood U(x) of x there is a point y with $y \in S$ and so $u(y) \ge 0$. Hence by the continuity of $u, u(x) \ge 0$, a contradiction.

This theorem shows that condition (1.3) is necessary for the existence of a utility in \mathbb{R}^n . Otherwise there are x, y, z with x > kz, z < 0. Hence (x/k) > z and by (2.1), x/k - z > 0. But in the usual topology on $\mathbb{R}^n (x/k) - z \to -z$, so that $-z \in S$, contradicting (2.6). (Every linear functional defined on \mathbb{R}^n is continuous in the usual topology).

In $R^{n}(1.3)$ implies (2.6) ([1, page 456]).

A partial order is called pure if $x \sim y$ implies x = y. A partial order is pure if and only if $x \sim 0$ implies x = 0, or equivalently, if and only if $S = T \cup \{0\}$.

3. An example. Let X be the space of the sequences of real numbers which have only a finite number of members different from zero. X has denumerable dimensionality and up to isomorphism is the only such space. The algebraic dual space of X is the space of all real sequences. Developing an earlier example of mine, M. Perles gave the following example of a pure partial order on X which satisfies (1.1)-(1.3) and has no utility. In fact, this order has no finite-dimensional utility.

Denote by e_i the *i*-th unit vector. Let $e_{n,1} = e_1$, $e_{n,i} = -(n-1)e_{i-1} + e_i$, i = 2, ..., n. $(e_{n,i}$ is the vector of X whose (i-1)-th coordinate is -(n-1) and whose *i*-th coordinate is 1, all the other coordinates being zero). For example:

$$e_{4,1} = (1,0,...,0,...), e_{4,2} = (-3,1,0,...), e_{4,3} = (0,-3,1,0...), e_{4,4} = (0,0,-3,1,0,...)$$

Define P_n as the set of all linear combinations of the form $\sum_{i=1}^{n} \alpha_i e_{n,i}$ with $\alpha_i \ge 0$, $\alpha_n > 0$. We shall show presently that $\bigcup_{n=1}^{\infty} P_n$ and $\bigcup_{n=1}^{N} P_n$ are convex cones in X. It is obvious that each P_n is a convex cone. $e_n \in P_n$, since $e_i = (n-1)^{i-1}e_{n-1} + (n-1)^{i-2}e_{n,2} + \ldots + (n-1)e_{n-1} + e_{n-1}$. Let $x \in P_n, y \in P_m$ and assume n > m. Then

$$x = \sum_{i=1}^{n} \alpha_{i}e_{n,i}, \quad y = \sum_{i=1}^{m} \beta_{i}e_{m,i} \quad \text{with } \alpha_{n}, \beta_{m} > 0, \ \alpha_{i}, \beta_{i} \ge 0.$$

$$x + y = \sum_{i=1}^{m} (\alpha_{i} + \beta_{i})e_{n,i} + (n - m) \sum_{i=2}^{m} \beta_{i}e_{i-1} + \sum_{i=m+1}^{n} \alpha_{i}e_{n,i}$$

$$= \sum_{i=1}^{m} (\alpha_{i} + \beta_{i})e_{n,i} + (n - m) \sum_{i=2}^{m} \beta_{i} \left(\sum_{k=1}^{n-1} (n - 1)^{i-k-1}e_{n,k} \right)$$

$$+ \sum_{i=m+1}^{n} \alpha_{i}e_{n,i}$$

and so x + y is contained in P_n .

Define $T = \bigcup_{n=1}^{\infty} P_n$, and set x > y if and only if $x - y \in T$. We obtain a pure order satisfying (1.1)–(1.3), $(0 \notin T)$. It is obvious that (1.1) and (1.2) are satisfied. Set $E^n = \{x \in X; x_i = 0 \text{ for } i > n\}$. It suffices to prove (1.3) for $x, z \in E^n$, n = 1, 2, ... By theorem A, it suffices to show that the partial order, reduced to E^n , has a utility. Define $u_n \in E^{n*}$ by

$$u_n(x) = \sum_{k=1}^n n^k x_k.$$

From the definitions of T and the P_i 's it follows that $x \in T \cap E^n$ if and only if $x \in P_i$, i = 1, ..., n. Now $u_n(e_{i,j}) > 0$ for $1 \le i \le n$, $1 \le j \le i$. Hence $u_n(x) > 0$ for $x \in T \cap E^n$ and therefore u_n is a utility on E^n and our order satisfies (1.3).

T has no finite-dimensional utility. Suppose that v(x) is such a utility, $v(x) = (\phi_1(x), \dots, \phi_m(x)), \phi_i(x)$ are linear functionals on X, and without loss of generality let m be the minimal dimension of a possible multi-dimensional utility for this order (this includes the case m = 1). Then ϕ_1 is not identically zero. Every unit vector e_i is contained in T. Hence there is an e_k with $\phi_1(e_k) > 0$ so that $\phi_1(-e_k) < 0$. Let n be an integer, n > k + 2. For every $\varepsilon > 0$, the vector

$$a_{k,n,\varepsilon} = -e_k + \frac{1}{n-1}e_{k+1} - \varepsilon(n-1)e_{n-1} + \varepsilon e_n$$

= $\left(0, \dots, 0, -1, \frac{1}{n-1}, \dots, -\varepsilon(n-1), \varepsilon, 0, \dots\right)$
 $k \quad k+1 \qquad n-1 \quad n$

is contained in P_n and therefore in T, so that $\phi_1(a_{k,n,\epsilon}) \ge 0$, (if $\phi_1(x) < 0$ then 0 is preferred to v(x) in the lexicographic order). By letting $\epsilon \to 0$ it follows that $\phi_1(-e_k + (1/(n-1))e_{k+1}) \ge 0$, and by letting $n \to \infty$ it follows that $\phi_1(-e_k) \ge 0$, a contradiction. (It is clear that every linear functional on X, reduced to E^n , is continuous on E^n).

4. The main existence theorems. Let X be the space of the real sequences which have only a finite number of members different from zero, \gtrsim a partial order on X satisfying (1.1)-(1.2). We may assume that \gtrsim is pure. Otherwise divide by $E = \{x : x \sim 0\}$ which is a linear subspace of X. On the quotient space X/E, \gtrsim induces a pure partial order satisfying (1.1)-(1.2). The quotient space is isomorphic to a linear subspace of X, which is either a Euclidean space or has denumerable dimensionality, i.e. is isomorphic to X. The first case is settled in [1], and it follows that (1.3) is a necessary and sufficient condition for the existence of a utility. (It is obvious that a utility defined on X/E induces in a natural way a utility defined on X.)

In order to settle the second case, let us topologize X in the following way: a typical neighbourhood of zero is the set of all $x \in X$ such that $|x_i| < \varepsilon_i$ for a given sequence of positive numbers $(\varepsilon_i)_{i=1}^{\infty}$. Every linear functional defined on X is continuous in this topology. For if $u \in X^*$ (the algebraic dual space of X), then u is represented by a sequence of real numbers u_i where $u_i = u(e_i)$. Let an $\varepsilon > 0$ be given. Define $\varepsilon_i = \varepsilon/2^i u_i$ if $u_i \neq 0$, $\varepsilon_i = 1$ if $u_i = 0$. Let x be a vector in X. For every $y \in X$, $|(y - x)_i| < \varepsilon_i$ implies $|u(y) - u(x)| < \varepsilon$, hence u is continuous. (The topology induced by any one of the l_p norms does not have this property).

We remark that this topology is separable, since in every E^m there is a dense sequence, and the union of these sequences is dense in X. Moreover, the induced topology on E^n has a countable basis for every n (the induced topology coincides with the usual topology). Hence, if $\mathcal{M} \subset X$ and to each $x \in \mathcal{M}$ there corresponds an open set U_x which contains x, then there is a sequence $\{x_i\}$ of points of \mathcal{M} such that $\mathcal{M} \subset \bigcup_i U_{x_i}$. We may construct this sequence by first covering $\mathcal{M} \cap E^n$ and then taking the union of these sequences (union over n).

We are now able to state and prove the following theorem:

THEOREM B. Let \gtrsim be a pure order on X and let $(-T) \cap \overline{T} = \emptyset$ in the above topology. Then there is a utility on X.

Proof. Let p be any point of T. Following Klee ([3]), we assert that there is a neighbourhood U_p of p such that $[U_p \cup T]$ (the convex hull of U_p and T) does not contain 0. Otherwise there are $q \in U_p$, $a \in T$, $0 < \alpha < 1$ such that $\alpha q + (1 - \alpha)a = 0$, for every U_p . Then $-\alpha q = (1 - \alpha)a$, $-q = (1 - \alpha)/\alpha$) $a \in T$ (since T is a cone) so that $-p \in \overline{T}$, contradicting $(-T) \cap \overline{T} = \emptyset$.

 $[U_p \cup T]$ is a convex set with non-empty interior, and $0 \notin [U_p \cup T]$. Hence there is a nonzero linear functional u_p which supports it, i.e., $x \in [U_p \cup T]$ implies $u_p(x) \ge 0$ ([4 page 191]). Since p is an internal point of $[U_p \cup T]$, $u_p(p) > 0$. There exists a neighborhood V_p of p with $u_p(y) > 0$ for $y \in V_p$, because u_p is continuous. By the remark made above, there is a sequence p_i of points of T such that $T \subset \bigcup_i V_{p_i}$, since $T \subset \bigcup_p V_p$.

 $u_{p_n} | E^n$ is a linear functional on E^n and so is bounded there. Let us denote its Euclidean norm on E^n by $||u_{p_n}||_n$. Set

$$u(x) = \sum_{n=1}^{\infty} \frac{u_{p_n}(x)}{2^n \|u_{p_n}\|_n + 1}.$$

The series converges pointwise for each $x \in X$, since there is a positive integer m with $x \in E^m$, so that $x \in E^i$ for all $i \ge m$. For every $n \ge m$,

$$\begin{split} \sum_{i=1}^{n} \left| \frac{u_{p_{i}}(x)}{2^{i} \left\| u_{p_{i}} \right\|_{i} + 1} \right| &\leq \sum_{i=1}^{m-1} \frac{\left| u_{p_{i}}(x) \right|}{2^{i} \left\| u_{p_{i}} \right\|_{i} + 1} + \sum_{i=m}^{n} \frac{\left\| u_{p_{i}} \right\|_{i} \left\| x \right\|_{i}}{2^{i} \left\| u_{p_{i}} \right\|_{i} + 1} \\ &\leq \sum_{i=1}^{m-1} \frac{\left| u_{p_{i}}(x) \right|}{2^{i} \left\| u_{p_{i}} \right\|_{i} + 1} + \sum_{i=m}^{n} \frac{\left\| x \right\|}{2^{i}} \\ &\left(\left\| x \right\|_{i} = \left\| x \right\| = \left(\sum_{j=1}^{m} x_{j}^{2} \right)^{1/2} \text{ for } i \geq m \right). \end{split}$$

YAKAR KANNAI

The first term on the right hand of this inequality is a constant for a fixed x, and the second term converges. For every $x \in T$, u(x) > 0, since $u_{p_n}(x) \ge 0$ for all n and there is at least one k with $x \in V_{p_k}$, so that $u_{p_k}(x) > 0$. Thus u is a utility.

From theorems A and B and by the above remarks it follows that (2.6) is both necessary and sufficient in the countable dimensional case.

THEOREM C. If X is a separable normed linear space, \succeq is a partial order on X satisfying (1.1), (1.2), (2.6) then there is a (bounded) utility. (This includes the case of l_p spaces, $1 \leq p < \infty$.)

Proof. By a theorem of Klee ([3 theorem (2.7)]) there is a functional u such that $x \in S$ implies $u(x) \ge 0$, and u(x) > 0 for $x \in S$ and $x \notin -S$ (hence u(x) = 0 for $x \in S \cap (-S)$).

It is easy to see, by the method of proof of theorem A, that (2.6) is also necessary for the existence of a *bounded* utility.

REFERENCES

1. Aumann, R. J., 1962, Utility theory without the completeness axiom, *Econometrica*, 30, 445-462.

2. Hausner, M., 1954, Multidimensional utilities, in *Decision Processes*, edit. by Thrall, Coombs and Davis, John Wiley, New York, pp. 167–180.

- 3. Klee, V. L., 1955, Separation properties of convex cones, Proc. Amer. Math. Soc., 6, 313-318.
- 4. Köthe, G., 1960, Topologische Lineare Räume, Springer Verlag.

THE HEBREW UNIVERSITY OF JERUSALEM