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ABSTRACT 

An example is given of a preference order on a space of denumerable algebraic 
dimension that has no utility, and meeessary and sufficient conditions for 
the existence of utilities in various linear spaces are given. 

1. Introduction. "U t i l i t y "  is a numerical function representing a preference 
order, which is useful in solving optimization problems. Until recently, utility 
theory was restricted to complete preference orders ; the  extension to orders that 
are not  necessarily complete was made in [1], but the results of  that paper are 
restricted to finite-dimensional spaces of  alternatives. The infinite-dimensional 
case is important  for certain types of  economic models, e.g. those involving an 
infinite time horizon or continuous time, commodities that may be available in a 
continuum of  quantities, continua of prices or of  geographic locations, etc. It is 
the object of  this paper to investigate to what extent the results of  [1] can be 
extended to infinite-dimensional spaces of  alternatives. In particular, a problem 
raised in [1] will be answered. 

Let X be a real linear space. We assume that on X there is defined a transitive 
and reflexive relation called preference-or-indifference and denoted by ~ .  If  
x ~ y  and y ~ x, we shall say that x is indifferent to y and write x ,,~ y. If  
x >- y but not  x ~ y, we shall say that x is preferred to y and write x >- y. The 
relation ~ will be called a partial order. (We shall not  assume that ~ is complete). 

We assume that the following conditions hold: 
(1.1) x ~ y  i m p l i e s x + z ~ y + z f o r a l l z ~ X ;  
(1.2) x ~ y  a n d ~ > 0 i m p l i e s ~ x ~ y ;  
(1.3) x >- kz for  all positive integers k implies not  z >- 0. 

A real linear functional u defined on all X will be called a utility if x ~ y 

implies u(x) > u(y), and x >- y implies u(x) > u(y). A vector valued linear function 
v defined on all X will be called a multi-dimensional utility if x ~ y implies 
v(x) ~ v(y) and x >-y implies v(x)>-v(y). Here the order on the vector space 
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(the space of values of v) is the lexicographic order, i.e., the vector v = (v~ ... .  , v,) is 
preferred or indifferent to w=(wl,  .. . ,wn)if o=w or if v~>wifor the first coordi- 
nate i such that v~v~wi. (The lexicographic order satisfies (1.1), (1.2)but not(1.3)). 

Aumann [1] proved that if X is a finite-dimensional Euclidean space, the 
assumptions (1.1)-(1.3) imply the existence of a utility. He gave an example of a 
partial order satisfying these assumptions without having any utility, if X is the 
set of all infinite sequences of real numbers, and raised the problem of the existence 
of a utility if X has countable dimensionality (algebraic dimensionality). 

An example will be given here of an order on the space with countable dimen- 
sionality which does not have even a multi-dimensional (finite-dimensional) 
utility and, of course, does not have a (numerical) utility. A necessary and suf- 
ficient condition for the existence of  a utility in the countable dimensional case 
will be given, and a sufficient condition for the existence of a utility if X is a 
seperable normed space will also be given. 

The author wishes to thank Mr. M. Perles for a number of very helpful con- 
versations, and in particular for the present form of the example in section 3. 

2. Some preliminaries. The following are simple consequences of the assump- 
tions (1.1)-(1.3). (We denote the zero element of X by 0): 

(2.1) x ~ y if and only if x - y ~ 0; 
x ~,-y if and only i f x  - y ~ 0 ;  

(2.2) x ~ y and z ~ y and 0 < a < I imply x + (1 - a)z ~ y; 
x ~- y and z :>-y and 0 < ~ < I imply x + (1 - ~)z ~-y;  

(2.3) x ~ 0 if and only if - x ~ O, x >- 0 if and only if - x ~: O. 

Set T = { x : x ~ - O } , S = { x : x  ~0). 

(2.4) T and S are convex cones, 0~ T, 0 E S and T c S. 
I f  A, B c X ,  s e t A + B = ( a + b ; a ~ A , b ~ B } , - A = ( x : - x ~ A }  

(2.5) {x : x ~ 0) -- S ~  ( - S) and is a linear subspace of X. 

We remark that a real linear functional u defined on X so that u(x) ~_ 0 ff 
x E S, u(x) > 0 if x ~ T, is a utility. (It is obvious that a utility satisfies this). Simi- 
larly, a vector valued linear function v defined on X is a multi-dimensional utility 
if and only if  x ~ S implies v(x)~ O, x ~ T implies v(x)),-0 (preference in the 
lexicographic order). 

TI-mOREM A. A necessary condition for the existence of a utility for the partial 
order ~ is that in every linear topology on X in which every linear functional 
defined on X is continuous, 

(2.6) ( -  T) C3 g = ~ (which implies of course that ( - T) t 3 / '  = 12i).* 

* A superior bar denotes closure. 
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Proof. Assume, on the contrary, that there is a point x e ( -  T ) n  ,-¢. From 
(2.3) it follows that u(x) < 0. In every neighbourhood U(x) of x there is a point 
y with y ~ S and so u(y) > O. Hence by the continuity of  u, u(x) > 0, a contra- 
diction. 

This theorem shows that condition (1.3) is necessary for the existence of a 
utility in R ~. Otherwise there are x , y , z  with x >-kz,  z ~ O. Hence ( x / k ) ~ - z  and 
by (2.1), x /k  - z >-0. But in the usual topology on R ~ ( x / k ) - z  ~ - z, so that 
- z e S, contradicting (2.6). (Every linear functional defined on R n is continuous 

in the usual topology). 
In R n (1.3) implies (2.6) ([1, page 456]). 
A partial order is called pure if x ~ y implies x = y. A partial order is pure 

if and only if x ,,, 0 implies x = 0, or equivalently, if and only if S = T U {0}. 

3. An example. Let X be the space of  the sequences of  real numbers which 
have only a finite number of  members different from zero. X has denumerable 
dimensionality and up to isomorphism is the only such space. The algebraic dual 
space of X is the space of  all real sequences. Developing an earlier example of 

mine, M. Perles gave the following example of  a pure partial order on X which 
satisfies (1.1)-(1.3) and has no utility. In fact, this order has no finite-dimensional 

utility. 
Denote by e~ the i-th unit vector. Let  en,1 = el, e , , ~ = - ( n -  1)ei-1 + e~, 

i = 2, . . . ,  n. (e~,i is the vector of  X whose (i - 1)-th coordinate is - (n - 1) and 

whose i-th coordinate is 1, all the other coordinates being zero). For  example: 

e4 1 = (1 ,0 , . . . ,0  . . . .  ),e4,2 = ( - 3,1,0, . . .) ,e4.3 = (0, - 3 , 1 , 0 . . . ) ,  
e44 = ( 0 , 0 , - 3 , 1 , 0  . . . .  ) 

Define P ,  as the set of  all linear combinations of  the form ~t"= i ~e,, t  with 
~, > 0, ~, > 0. We shall show presently that U~--1P,  and [..J~=IP, are convex 
cones in X. It  is obvious that  each P ,  is a convex cone. e~ ~ P , ,  since 

e i = ( n -  1)~-Xe, 1 + ( n -  1)~-Ze,.2 + ... + ( n -  1)e, ~-1 + e ,  i. Let  x e P , , y ~ P m  
and assume n > m. Then 

n ra 

X = ~ ~ e  n i, Y = ~.  ~lem.l 
1 = 1  | ~ 1  

with ~.,/~, > O, ~t,/~J --> O. 

1 = 1  / = 2  i = m + l  

-- ~, (~, + p,)e,,., + (n - m) =~2 p' ,,.k t=1  t 1 (n  - -  1 ) t - ~ - l e  

n 

+ ~ e~en.t 
| ~ m + l  

and so x + y is contained in P. .  
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D e f i n e T  U , = ~  , , a n d s e t x ~ - y i f a n d o n l y i f x - y ~ T .  Weobtainapure 
order satisfying (1.1)-(1.3), (0 ¢ T). It  is obvious that (1.1) and (1.2) are satisfied. 
Set E" = {x ~ X;  xi = 0 for i > n}. It  suffices to prove (1.3) for x, z ~ E", n = 1,2,.... 
By theorem A, it suffices to show that the partial order, reduced to E n has a utility. 
Define u,, ~ E n* by 

u,(x) = ~ nkxk. 
k = l  

From the definitions of  T and the Pi's it follows that x ~ T t3 E" if and only if 
x~Pi ,  i = 1, . . . ,n.  Now u,,(e~j) > 0 for 1 < i < n, 1 < j  < i. Hence u,(x) > 0 for 
x E T c3 E" and therefore u, is a utility on E" and our order satisfies (1.3). 

T has no finite-dimensional utility. Suppose that v(x) is such a utility, 
v(x) = (q~l(x), ..., ~b,,(x)), ~bi(x ) are linear functionals on X, and without loss of  
generality let m be the minimal dimension of  a possible multi-dimensional utility 
for  this order (this includes the case m = 1). Then ~b~ is not identically zero. 
Every unit vector e~ is contained in T. Hence there is an ek with q~l(ek) > 0 so that 
~bx( - ek) < 0. Let n be an integer, n > k + 2. For  every ~ > 0, the vector 

1 
ak.n,8 = - -  ek + -~ '~_  l e k + l  - -  e(n - 1)e,-1 + ee, 

) n---Z- ]- . . . .  , - e(n - 1), 8,0,. . .  

k k + l  n - 1  n 

is contained in P,  and therefore in T, so that ~bl(ak,,,~) > 0, (if ~bl(x ) < 0 then 0 is 
preferred to v(x) in the lexicographic order). By letting e--* 0 it follows that 
~x(-ek  + (1/(n-1))ek+l)>= O, and by letting n ~ oo it follows that ~bx( - ek) __> 0, 

a contradiction. (It is clear that every linear functional on X, reduced to E", is 

continuous on g"). 

4. The main existence theorems. Let X be the space of the real sequences 
which have only a finite number of  members different from zero, ~ a partial order 
on X satisfying (1.1)--(1.2). We may assume that ~ is pure. Otherwise divide by 
E = {x :x  ~ 0} which is a linear subspace of  X. On the quotient space X/E, 

induces a pure partial order satisfying (1.1)-(1.2). The quotient space is iso- 
morphic to a linear subspace of X, which is either a Euclidean space or has 
denumerable dimensionality, i.e. is isomorphic to X. The first case is settled in 
[1], and it follows that (1.3) is a necessary and sufficient condition for the existence 

of  a utility. (It is obvious that a utility defined on X/E induces in a natural way 

a utility defined on X.) 
In order to settle the second case, let us topologize X in the following way: 

a typical neighbourhood of  zero is the set of  all x ~ X such that [ x~ [ < e~ for a given 
g oO • 

sequence of  positive numbers ( t)i = x 
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Every linear functional defined on X is continuous in this topology. For  if 
u ~ X* (the algebraic dual space of  X), then u is represented by a sequence of  real 
numbers us where us = u(e~). Let an e > 0 be given. Define e~ = e/2iui if us ~ 0, 
e~ = 1 if ui = 0. Let x be a vector in X. For  every y E X, I(Y - x)~l < ei implies 
[ u(y) - u(x)] < e, hence u is continuous. (The topology induced by any one of 
the lp norms does not  have this property). 

We remark that this topology is separable, since in every E"  there is a dense 
sequence, and the union of  these sequences is dense in X. Moreover,  the induced 
topology on E 4 has a countable basis for every n (the induced topology coincides 
with the usual topology). Hence, if . . / / c  X and to each x ~ . / / / there corresponds 
an open set Ux which contains x, then there is a sequence {x~} of  points o f . / / s u c h  
that ~1/= 1,.)~ Ux,. We may construct this sequence by first covering ..//r3 E 4 and 
then taking the union of  these sequences (union over n). 

We are now able to state and prove the following theorem: 

TI-mOR~MB. Let  ~ be a pure order on X and let ( - T)  t3 ~ = ~ in the 
above topology. Then there is a ut i l i ty  on X .  

Proof. Let p be any point of T. Following Klee ([3]), we assert that there is a 
neighbourhood Up of  p such that [Up to T]  (the convex hull of  Up and T) does 
not  contain 0. Otherwise there are q e U p ,  a c T ,  0 < ~ < 1 such that 
~q + (1 - ~)a = 0, for  every Up. Then - ~q = (1 - ~)a, - q = (1 - ~)/~)a ~ T 
(since T is a cone) so that - p e T, contradicting ( - T) t3 T = ~ .  

[Up to T] is a convex set with non-empty interior, and 0 ( [ U p  to T].  Hence 
there is a nonzero linear functional up which supports it, i.e., x e [Up to T]  implies 
up(x) > 0 ([4 page 191]). Since p is an internal point of  [U v to T],  up(p) > 0. There 
exists a neighborhood Vp of p with up(y) > 0 for y e Vp, because up is continuous. 
By the remark made above, there is a sequence Pi of  points of  T such that 

T = Us  Vv,, since T = Up  Vv" 
Up, I E 4 is a linear functional on E 4 and so is bounded there. Let us denote 

its Euclidean norm on E 4 by ~uv, 1[4. Set 
oo 

u(x) = 2 u,.(x) 
2 4 4=, llup.ll4 + 1 

The series converges pointwise for each x c X, since there is a positive integer m 
with x ~ E m, so that x ~ E * for all i > m. For  every n > m, 

u,,(x) m-, lup,(,,)l + Ilu,,ll, llx[I, 
2'llu,,,H, + 1 ~g= 2,1lu ,l], + 1 • = 2'llu,,l],+1 - , = ,  .=  

"-' lup,(x)l II ll -<_£ + 
,=,  2'[lup, II , +  1 ,=,~ 2' 

( ' "  "= ) 
llxll,---ll ll= | z  x,=./ for i _ > m  . 

\ j = : l  / 
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The first term on the right hand of  this inequality is a constant for a fixed x, and 
the second term converges. For every x ~ T, u(x) > 0, since up.(x) >= 0 for all n 
and there is at least one k with x ~ Vpk, so that upk(x) > 0. Thus u is a utility. 

From theorems A and B and by the above remarks it follows that (2.6) is both 
necessary and sufficient in the countable dimensional case. 

TrmOgEM C. I f  X is a separable normed linear space, ~ is a partial order 
on X satisfying (1.1), (1.2), (2.6) then there is a (bounded) utility. (This includes 
the case of lp spaces, 1 <= p < oo.) 

Proof. By a theorem of Klee ([3 theorem (2.7)]) there is a functional u such that 
x e $ implies u(x) ~_ O, and u(x) > 0 for x ~ $ and x ~ - $ (hence u(x) = 0 for 

xESn(-S)). 
It is easy to see, by the method of  proof  of  theorem A, that (2.6) is also necessary 

for the existence of  a bounded utility. 
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