EXISTENCE OF A UTILITY IN INFINITE DIMENSIONAL
PARTIALLY ORDERED SPACES*

BY
YAKAR KANNAI

ABSTRACT

An example is given of a preference order on a space of denumerable algebraic
dimension that has no utility, and :necessary and sufficient conditions for
the existence of utilities in various linear spaces are given.

1. Introduction. ‘‘Utility”’ is a numerical function representing a preference
order, which is useful in solving optimization problems. Until recently, utility
theory was restricted to complete preference orders; the extension to orders that
are not necessarily complete was made in [1], but the results of that paper are
restricted to finite-dimensional spaces of alternatives. The infinite-dimensional
case is important for certain types of economic models, e.g. those involving an
infinite time horizon or continuous time, commodities that may be available in a
continuum of quantities, continua of prices or of geographic locations, etc. It is
the object of this paper to investigate to what extent the results of [1] can be
extended to infinite-dimensional spaces of alternatives. In particular, a problem
raised in [1] will be answered.

Let X be a real linear space. We assume that on X there is defined a transitive
and reflexive relation called preference-or-indifference and denoted by 2. If
x 2y and y > x, we shall say that x is indifferent to y and write x ~ y. If
x >y but not x ~ y, we shall say that x is preferred to y and write x> y. The
relation 2~ will be called a partial order. (We shall not assume that Z s complete).

We assume that the following conditions hold:
(1.1) xty implies x + z 2y + z for all ze X;
(1.2) xZy and a > 0 implies ax 2 ay;
(1.3) x>kz for all positive integers k implies not z > 0.

A real linear functional u defined on all X will be called a utility if x > y
implies u(x) = u(y), and x > y implies u(x) > u(y). A vector valued linear function
v defined on all X will be called a multi-dimensional utility if x 2 y implies
v(x)zv(y) and x>y implies v(x) >uv(y). Here the order on the vector space
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(the space of values of v) is the lexicographic order, i.e., the vector v = (vy,...,v,) is
preferred or indifferent to w=(wy,...,w,)if v=w or if v;>w;for the first coordi-
nate i such that v;5w;. (The lexicographic order satisfies (1.1),(1.2) but not(1.3)).

Aumann [1] proved that if X is a finite-dimensional Euclidean space, the
assumptions (1.1)—~(1.3) imply the existence of a utility. He gave an example of a
partial order satisfying these assumptions without having any utility, if X is the
set of allinfinite sequences of real numbers, and raised the problem of the existence
of a utility if X has countable dimensionality (algebraic dimensionality).

An example will be given here of an order on the space with countable dimen-
sionality which does not have even a multi-dimensional (finite-dimensional)
utility and, of course, does not have a (numerical) utility. A necessary and suf-
ficient condition for the existence of a utility in the countable dimensional case
will be given, and a sufficient condition for the existence of a utility if X is a
seperable normed space will also be given.

The author wishes to thank Mr. M. Perles for a number of very helpful con-
versations, and in particular for the present form of the example in section 3.

2. Some preliminaries. The following are simple consequences of the assump-
tions (1.1)—(1.3). (We denote the zero element of X by 0):

(2.1) xZy if and only ifx—yZ0;
x>y ifand onlyif x — y > 0;

2.2) xbyandzzyand0<a<1implyx+(1-—cx)z Ey;
x>yandz>yand O<a<1limplyx + (1 — )z >y;

(2.3) x2Z 0if and only if — x X0, x>0 if and only if — x <0.

Set T ={x:x>0}, S ={x:x Z0}.
(2.4) T and S are convex cones, 0¢ T,0eSand T < S.

If A BcX,setA+B={a+b;acd,beB}, —A={x:—xed}
(2.5) {x:x~0}=Sn(~ S)and is a linear subspace of X,

We remark that a real linear functional u defined on X so that u(x) = 0 if
x €S, u(x) > 0if x e T, is a utility. (It is obvious that a utility satisfies this). Simi-
larly, a vector valued linear function v defined on X is a multi-dimensional utility
if and only if x€ S implies v(x) 20, xe T implies v(x) >0 (preference in the
lexicographic order).

THEOREM A. A necessary condition for the existence of a utility for the partial
order 7= is that in every linear topology on X in which every linear functional
defined on X is continuous,

(2.6) (— T)n S = (which implies of course that (- T)n T'= &).*

* A superior bar denotes closure.
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Proof. Assume, on the contrary, that there is a point xe(— T) S. From
(2.3) it follows that u(x) < 0. In every neighbourhood U(x) of x there is a point
y with y€ S and so u(y) = 0. Hence by the continuity of u, u(x) = 0, a contra-
diction.

This theorem shows that condition (1.3) is necessary for the existence of a
utility in R". Otherwise there are x,y,z with x > kz, z < 0. Hence (x/k) >> z and
by (2.1), x/k — z>0. But in the usual topology on R" (x/k)—z — — z, so that
— z € §, contradicting (2.6). (Every linear functional defined on R" is continuous
in the usual topology).

In R" (1.3) implies (2.6) ([1, page 456]).

A partial order is called pure if x ~ y implies x = y. A partial order is pure
if and only if x ~ 0 implies x = 0, or equivalently, if and only if S = T {0}.

3. An example. Let X be the space of the sequences of real numbers which
have only a finite number of members different from zero. X has denumerable
dimensionality and up to isomorphism is the only such space. The algebraic dual
space of X is the space of all real sequences. Developing an earlier example of
mine, M. Perles gave the following example of a pure partial order on X which
satisfies (1.1)-(1.3) and has no utility. In fact, this order has no finite-dimensional
utility.

Denote by e; the i-th unit vector. Let e, ; =e;, ¢€,;,= —(n—1)¢;_; +¢,
i=2,...,n. (e, is the vector of X whose (i — 1)-th coordinate is — (n — 1) and
whose i-th coordinate is 1, all the other coordinates being zero). For example:

€11 = (1,0,...,0,...),84,2=(—3,1,0,...),64,3=(0,—3,1,0...),
€44 = (090,—331,03-")

Define P, as the set of all linear combinations of the form X%, xe, ; with
;2 0, «, >0. We shall show presently that | J;2, P, and | J)'-; P, are convex
cones in X. It is obvious that each P, is a convex cone. ¢, € P,, since
ee=n—1"te,  +(n— 1)"2e,,_2 +..+(n—1)e,;—, +e,; Let xeP,yeP,
and assume n > m. Then

n m
X = E %, i, y= Z ﬂtem,i with Ups B >0, ;, B; 2 0.
i=1 i=1

x4y = T @+B)er+n-m) T e+ T e,
i=1 i=2

t=m+1

m m n—1
= T (4 +B)ess+(n—m) T B, ( T (- 1)""'1e,,,k)
i=1 i=2 k=1

n
+ X e,y
i=m+1

and so x + y is contained in P,.
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Define T = U‘f=1 P,, and set x > y if and only if x — y e T. We obtain a pure
order satisfying (1.1)-(1.3), (0 ¢ T). It is obvious that (1.1) and (1.2) are satisfied.
Set E" = {x € X; x;= Ofor i >n}.Itsufficesto prove (1.3)forx,z€E", n = 1,2,....
Bytheorem A4, it suffices to show that the partial order, reduced to E 7, has a utility.
Define u, € E"™* by

u(x) = T n¥x,.
k=1

From the definitions of T and the P;’s it follows that xe T n E”" if and only if
xeP,i=1,...,n. Now u,(e; ;) >0for 1£i<n, 1<5j<i. Hence u,(x)>0 for
x € T n E" and therefore u,, is a utility on E"” and our order satisfies (1.3).

T has no finite-dimensional utility. Suppose that o(x) is such a utility,
v(x) = (P 1(x),--., P (X)), ¢«x) are linear functionals on X, and without loss of
generality let m be the minimal dimension of a possible multi-dimensional utility
for this order (this includes the case m =1). Then ¢, is not identically zero.
Every unit vector ¢, is contained in T. Hence there is an ¢, with ¢(¢e;) > 0 so that
¢,(— ¢) < 0. Let n be an integer, n > k + 2. For every ¢ > 0, the vector

vy —e(n—1e,_y +ee,

1
Agn,e= — € +n_1

1
= (0,...,0, - 1, n——T’ ey ™ s(n - 1),8,0,...)

k k+1 n—1n

is contained in P, and therefore in T, so that ¢(ay »,.) 2 0, (if ¢,(x) <0 then Ois
preferred to v(x) in the lexicographic order). By letting 6 —0 it follows that
¢(—e + (1/(n—1))e; +1)= 0, and by letting n — oo it follows that ¢,(—¢,) =0,
a contradiction. (It is clear that every linear functional on X, reduced to E", is
continuous on E").

4. The main existence theorems. Let X be the space of the real sequences
which have only a finite number of members different from zero, E a partial order
on X satisfying (1.1)—(1.2). We may assume that 7 is pure. Otherwise divide by
E = {x:x ~0} which is a linear subspace of X. On the quotient space X/E,
> induces a pure partial order satisfying (1.1)~(1.2). The quotient space is iso-
morphic to a linear subspace of X, which is either a Euclidean space or has
denumerable dimensionality, i.e. is isomorphic to X. The first case is settled in
[1], and it follows that (1.3)is a necessary and sufficient condition for the existence
of a utility. (It is obvious that a utility defined on X/E induces in a natural way
a utility defined on X.)

In order to settle the second case, let us topologize X in the following way:
a typical neighbourhood of zero is the set of all x € X such that | x;| < ¢, for a given
sequence of positive numbers (¢);2; .
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Every linear functional defined on X is continuous in this topology. For if
u € X* (the algebraic dual space of X), then u is represented by a sequence of real
numbers u; where u; = u(e;). Let an &> 0 be given. Define g = &/2%; if u; # 0,
g =1if u;=0. Let x be a vector in X. For every yeX, |(y - x);| < & implies
[u(y) — u(x)| <e, hence u is continuous. (The topology induced by any one of
the /, norms does not have this property).

We remark that this topology is separable, since in every E™ there is a dense
sequence, and the union of these sequences is dense in X. Moreover, the induced
topology on E" has a countable basis for every n (the induced topology coincides
with the usual topology). Hence, if # < X and to each x € .# there corresponds
an open set U, which contains x, then there is a sequence {x;} of points of # such
that # < U,- U,,. We may construct this sequence by first covering .# N E" and
then taking the union of these sequences (union over n).

We are now able to state and prove the following theorem:

THEOREM B. Let 22 be a pure order on X and let (= T)n T=( in the
above topology. Then there is a utility on X.

Proof. Let p be any point of T. Following Klee ([3]), we assert that there is a
neighbourhood U, of p such that [U, U T] (the convex hull of U,and T) does
not contain 0. Otherwise there are qeU,, aeT, 0 < a < 1 such that
aq+(1 —a)ya=0, for every U,. Then —ag=(1—-a)a, —q=(1—a)/a)aeT
(since T is a cone) so that — pe T, contradicting (- T)n T=¢J.

[U, U T]is a convex set with non-empty interior, and 0¢[U, U T]. Hence
there is a nonzero linear functional u, which supportsit,i.e., x e [U, U T] implies
u,(x) = 0([4 page 191]). Since p s an internal point of [U, U T], u,(p) > 0. There
exists a neighborhood V,, of p with u,(y) > 0 for y € V,, because u, is continuous.
By the remark made above, there is a sequence p; of points of T such that
TcUl pi> SINCE TCUpr

p"IE" is a linear functional on E" and so is bounded there. Let us denote
its Euclidean norm on E" by |u,, |,. Set

* U, (%)

2 2 up, |0+ 17
The series converges pointwise for each x € X, since there is a positive integer m
with x € E”, so that x € E’ for all i 2 m. For every n = m,

u(x) =

m—1
% | um(x) B ) I A E3
=t 2 i+ 11550 2w, i+ 17 2, 2w, + 1
oL I B
z Pi
i= 12 ”um” +1 i=m 2!

(1el=t1= (£ ) Tor izm).
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The first term on the right hand of this inequality is a constant for a fixed x, and
the second term converges. For every x € T, u(x) > 0, since u, (x) = 0 for all n
and there is at least one k with x € V,,,so that u, (x) > 0. Thus u is a utility.

From theorems A and B and by the above remarks it follows that (2.6) is both
necessary and sufficient in the countable dimensional case.

TaeoreM C. If X is a separable normed linear space, 2 is a partial order

on X satisfying (1.1), (1.2), (2.6) then there is a (bounded) utility. (This includes
the case of I, spaces, 1 < p< ®.)

Proof. By a theorem of Klee ([3 theorem (2.7)]) there is a functional u such that
x € § implies u(x) 20, and u(x) >0 for xe § and x ¢ — § (hence u(x) =0 for
xeSn(-3).

It is easy to see, by the method of proof of theorem A4, that (2.6) is also necessary
for the existence of a bounded utility.
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