EXISTENCE OF A UTILITY IN INFINITE DIMENSIONAL **PARTIALLY ORDERED SPACES***

BY YAKAR KANNAI

ABSTRACT

An example is given of a preference order on a space of denumerable algebraic dimension that has no utility, and meeessary and sufficient conditions for the existence of utilities in various linear spaces are given.

1. Introduction. "Utility" is a numerical function representing a preference order, which is useful in solving optimization problems. Until recently, utility theory was restricted to complete preference orders;the extension to orders that are not necessarily complete was made in [1], but the results of that paper are restricted to finite-dimensional spaces of alternatives. The infinite-dimensional case is important for certain types of economic models, e.g. those involving an infinite time horizon or continuous time, commodities that may be available in a continuum of quantities, continua of prices or of geographic locations, etc. It is the object of this paper to investigate to what extent the results of [1] can be extended to infinite-dimensional spaces of alternatives. In particular, a problem raised in [1] will be answered.

Let X be a real linear space. We assume that on X there is defined a transitive and reflexive relation called preference-or-indifference and denoted by \geq . If $x \gtrsim y$ and $y \gtrsim x$, we shall say that x is indifferent to y and write $x \sim y$. If $x \succ y$ but not $x \sim y$, we shall say that x is preferred to y and write $x \succ y$. The relation \gtrsim will be called a partial order. (We shall not assume that \gtrsim is complete).

We assume that the following conditions hold:

(1.1) $x \gtrsim y$ implies $x + z \gtrsim y + z$ for all $z \in X$;

(1.2) $x \gtrsim y$ and $\alpha > 0$ implies $\alpha x \gtrsim \alpha y$;

(1.3) $x > kz$ for all positive integers k implies not $z > 0$.

A real linear functional u defined on all X will be called a utility if $x \gtrsim y$ implies $u(x) \ge u(y)$, and $x > y$ implies $u(x) > u(y)$. A vector valued linear function v defined on all X will be called a multi-dimensional utility if $x \gtrsim y$ implies $v(x) \ge v(y)$ and $x > y$ implies $v(x) > v(y)$. Here the order on the vector space

Received November 27, 1963.

^{*} Research partially supported by the U.S. Office of Naval Research under contract No. N 62558-3586.

230 YAKAR KANNAI [December

(the space of values of v) is the lexicographic order, i.e., the vector $v = (v_1, ..., v_n)$ is preferred or indifferent to $w=(w_1, ..., w_n)$ if $v=w$ or if $v_i>w_i$ for the first coordinate *i* such that $v_i \neq w_i$. (The lexicographic order satisfies (1.1), (1.2) but not(1.3)).

Aumann $\begin{bmatrix} 1 \end{bmatrix}$ proved that if X is a finite-dimensional Euclidean space, the assumptions (1.1) - (1.3) imply the existence of a utility. He gave an example of a partial order satisfying these assumptions without having any utility, if X is the set of all infinite sequences of real numbers, and raised the problem of the existence of a utility if X has countable dimensionality (algebraic dimensionality).

An example will be given here of an order on the space with countable dimensionality which does not have even a multi-dimensional (finite-dimensional) utility and, of course, does not have a (numerical) utility. A necessary and sufficient condition for the existence of a utility in the countable dimensional case will be given, and a sufficient condition for the existence of a utility if X is a seperable normed space will also be given.

The author wishes to thank Mr. M. Perles for a number of very helpful conversations, and in particular for the present form of the example in section 3.

2. Some preliminaries. The following are simple consequences of the assumptions (1.1) – (1.3) . (We denote the zero element of X by 0):

- (2.1) $x \gtrsim y$ if and only if $x y \gtrsim 0$; $x > y$ if and only if $x - y > 0$;
- (2.2) $x \gtrsim y$ and $z \gtrsim y$ and $0 < \alpha < 1$ imply $x + (1 \alpha)z \gtrsim y$; $x > y$ and $z > y$ and $0 < \alpha < 1$ imply $x + (1 - \alpha)z > y$;
- (2.3) $x \ge 0$ if and only if $-x \le 0$, $x > 0$ if and only if $-x < 0$.

Set $T = \{x : x > 0\}$, $S = \{x : x \ge 0\}$.

- (2.4) T and S are convex cones, $0 \notin T$, $0 \in S$ and $T \subset S$. If $A, B \subset X$, set $A + B = \{a + b; a \in A, b \in B\}, -A = \{x: -x \in A\}$
- (2.5) $\{x : x \sim 0\} = S \cap (-S)$ and is a linear subspace of X.

We remark that a real linear functional u defined on X so that $u(x) \ge 0$ if $x \in S$, $u(x) > 0$ if $x \in T$, is a utility. (It is obvious that a utility satisfies this). Similarly, a vector valued linear function v defined on X is a multi-dimensional utility if and only if $x \in S$ implies $v(x) \geq 0$, $x \in T$ implies $v(x) > 0$ (preference in the lexicographic order).

THEOREM A. A necessary condition for the existence of a utility for the partial *order* \geq is that in every linear topology on X in which every linear functional *defined on X is continuous,*

(2.6) $(-T) \cap \overline{S} = \emptyset$ (which implies of course that $(-T) \cap \overline{T} = \emptyset$).*

^{*} A superior bar **denotes closure.**

Proof. Assume, on the contrary, that there is a point $x \in (-T) \cap S$. From (2.3) it follows that $u(x) < 0$. In every neighbourhood $U(x)$ of x there is a point y with $y \in S$ and so $u(y) \ge 0$. Hence by the continuity of u, $u(x) \ge 0$, a contradiction.

This theorem shows that condition (1.3) is necessary for the existence of a utility in \mathbb{R}^n . Otherwise there are *x*, *y*, *z* with $x > kz$, $z < 0$. Hence $(x/k) > z$ and by (2.1), $x/k - z > 0$. But in the usual topology on $R^{n}(x/k) - z \rightarrow -z$, so that $-z \in \overline{S}$, contradicting (2.6). (Every linear functional defined on R^n is continuous in the usual topology).

In $R''(1.3)$ implies (2.6) ([1, page 456]).

A partial order is called pure if $x \sim y$ implies $x = y$. A partial order is pure if and only if $x \sim 0$ implies $x = 0$, or equivalently, if and only if $S = T \cup \{0\}$.

3. An example. Let X be the space of the sequences of real numbers which have only a finite number of members different from zero. X has denumerable dimensionality and up to isomorphism is the only such space. The algebraic dual space of X is the space of all real sequences. Developing an earlier example of mine, M. Perles gave the following example of a pure partial order on X which satisfies (1.1) – (1.3) and has no utility. In fact, this order has no finite-dimensional utility.

Denote by e_i the *i*-th unit vector. Let $e_{n,1} = e_1$, $e_{n,i} = -(n-1)e_{i-1} + e_i$, $i = 2,...,n$. ($e_{n,i}$ is the vector of X whose $(i - 1)$ -th coordinate is $-(n - 1)$ and whose i-th coordinate is 1, all the other coordinates being zero). For example:

$$
e_{4\ 1} = (1,0,...,0,...), e_{4,2} = (-3,1,0,...), e_{4,3} = (0,-3,1,0...),
$$

$$
e_{4\ 4} = (0,0,-3,1,0,...)
$$

Define P_n as the set of all linear combinations of the form $\sum_{i=1}^n \alpha_i e_{n,i}$ with $\alpha_i \geq 0$, $\alpha_n > 0$. We shall show presently that $\bigcup_{n=1}^{\infty} P_n$ and $\bigcup_{n=1}^{N} P_n$ are convex cones in X. It is obvious that each P_n is a convex cone. $e_n \in P_n$, since $e_i=(n-1)^{i-1}e_{n-1}+(n-1)^{i-2}e_{n-2}+...+(n-1)e_{n-i-1}+e_{n-i}$. Let $x\in P_n, y\in P_m$ and assume $n > m$. Then

$$
x = \sum_{i=1}^{n} \alpha_{i} e_{n i}, \qquad y = \sum_{i=1}^{m} \beta_{i} e_{m,i} \qquad \text{with } \alpha_{n}, \beta_{m} > 0, \alpha_{i}, \beta_{i} \ge 0.
$$

$$
x + y = \sum_{i=1}^{m} (\alpha_{i} + \beta_{i}) e_{n,i} + (n - m) \sum_{i=2}^{m} \beta_{i} e_{i-1} + \sum_{i=m+1}^{n} \alpha_{i} e_{n,i}
$$

$$
= \sum_{i=1}^{m} (\alpha_{i} + \beta_{i}) e_{n,i} + (n - m) \sum_{i=2}^{m} \beta_{i} \left(\sum_{k=1}^{n-1} (n-1)^{i-k-1} e_{n,k} \right)
$$

$$
+ \sum_{i=m+1}^{n} \alpha_{i} e_{n,i}
$$

and so $x + y$ is contained in P_n .

Define $T = \int_{0}^{\infty} \int_{0}^{\infty} f(x, y) \, dx$ and set $x > y$ if and only if $x - y \in T$. We obtain a pure order satisfying (1.1)-(1.3), ($0 \notin T$). It is obvious that (1.1) and (1.2) are satisfied. Set $E^n = \{x \in X : x_i = 0 \text{ for } i > n\}$. It suffices to prove (1.3) for $x, z \in E^n$, $n = 1, 2, ...$ By theorem A , it suffices to show that the partial order, reduced to E ⁿ, has a utility. Define $u_n \in E^{n*}$ by

$$
u_n(x) = \sum_{k=1}^n n^k x_k.
$$

From the definitions of T and the P_i 's it follows that $x \in T \cap E^n$ if and only if $x \in P_i$, $i = 1, ..., n$. Now $u_n(e_{i,j}) > 0$ for $1 \le i \le n$, $1 \le j \le i$. Hence $u_n(x) > 0$ for $x \in T \cap Eⁿ$ and therefore u_n is a utility on $Eⁿ$ and our order satisfies (1.3).

T has no finite-dimensional utility. Suppose that $v(x)$ is such a utility, $v(x) = (\phi_1(x), ..., \phi_m(x)), \phi_i(x)$ are linear functionals on X, and without loss of generality let m be the minimal dimension of a possible multi-dimensional utility for this order (this includes the case $m = 1$). Then ϕ_1 is not identically zero. Every unit vector e_i is contained in T. Hence there is an e_k with $\phi_1(e_k) > 0$ so that $\phi_1(-e_k)$ < 0. Let *n* be an integer, $n > k + 2$. For every $\varepsilon > 0$, the vector

$$
a_{k,n,\varepsilon} = -e_k + \frac{1}{n-1}e_{k+1} - \varepsilon(n-1)e_{n-1} + \varepsilon e_n
$$

=
$$
\left(0, ..., 0, -1, \frac{1}{n-1}, ..., -\varepsilon(n-1), \varepsilon, 0, ... \right)
$$

$$
k \quad k+1 \qquad n-1 \quad n
$$

is contained in P_n and therefore in T, so that $\phi_1(a_{k,n,\epsilon}) \ge 0$, (if $\phi_1(x) < 0$ then 0 is preferred to $v(x)$ in the lexicographic order). By letting $\varepsilon \to 0$ it follows that $\phi_1(-e_k + (1/(n-1))e_{k+1}) \ge 0$, and by letting $n \to \infty$ it follows that $\phi_1(-e_k) \ge 0$, a contradiction. (It is clear that every linear functional on X , reduced to $Eⁿ$, is continuous on $Eⁿ$).

4. The main existence theorems. Let X be the space of the real sequences which have only a finite number of members different from zero, \geq a partial order on X satisfying (1.1)-(1.2). We may assume that \gtrsim is pure. Otherwise divide by $E = \{x : x \sim 0\}$ which is a linear subspace of X. On the quotient space X/E , \geq induces a pure partial order satisfying (1.1)-(1.2). The quotient space is isomorphic to a linear subspace of X , which is either a Euclidean space or has denumerable dimensionality, i.e. is isomorphic to X . The first case is settled in $[1]$, and it follows that (1.3) is a necessary and sufficient condition for the existence of a utility. (It is obvious that a utility defined on *X/E* induces in a natural way a utility defined on X .)

In order to settle the second case, let us topologize X in the following way: a typical neighbourhood of zero is the set of all $x \in X$ such that $|x_i| < \varepsilon$ for a given sequence of positive numbers $(\epsilon_i)_{i=1}^{\infty}$.

Every linear functional defined on X is continuous in this topology. For if $u \in X^*$ (the algebraic dual space of X), then u is represented by a sequence of real numbers u_i where $u_i = u(e_i)$. Let an $\varepsilon > 0$ be given. Define $\varepsilon_i = \varepsilon/2^i u_i$ if $u_i \neq 0$, $\varepsilon_i = 1$ if $u_i = 0$. Let x be a vector in X. For every $y \in X$, $|(y - x)_i| < \varepsilon_i$ implies $|u(y) - u(x)| < \varepsilon$, hence u is continuous. (The topology induced by any one of the l_n norms does not have this property).

We remark that this topology is separable, since in every E^m there is a dense sequence, and the union of these sequences is dense in X . Moreover, the induced topology on $Eⁿ$ has a countable basis for every n (the induced topology coincides with the usual topology). Hence, if $\mathcal{M} \subset X$ and to each $x \in \mathcal{M}$ there corresponds an open set U_x which contains x, then there is a sequence $\{x_i\}$ of points of M such that $\mathcal{M} \subset \bigcup_i U_{\mathbf{x}_i}$. We may construct this sequence by first covering $\mathcal{M} \cap E^n$ and then taking the union of these sequences (union over n).

We are now able to state and prove the following theorem:

THEOREM B. Let \geq be a pure order on X and let $(-T) \cap T = \emptyset$ in the *above topology. Then there is a utility on X.*

Proof. Let p be any point of T. Following Klee (3) , we assert that there is a neighbourhood U_p of p such that $[U_p \cup T]$ (the convex hull of U_p and T) does not contain 0. Otherwise there are $q \in U_p$, $a \in T$, $0 < \alpha < 1$ such that $\alpha q + (1 - \alpha)a = 0$, for every U_p . Then $-\alpha q = (1 - \alpha)a$, $-q = (1 - \alpha)/\alpha)a \in T$ (since T is a cone) so that $-p \in \overline{T}$, contradicting $(-T) \cap \overline{T} = \emptyset$.

 $[U_p \cup T]$ is a convex set with non-empty interior, and $0 \notin [U_p \cup T]$. Hence there is a nonzero linear functional u_p which supports it, i.e., $x \in [U_p \cup T]$ implies $u_p(x) \ge 0$ ([4 page 191]). Since p is an internal point of $\left[U_p \cup T\right]$, $u_p(p) > 0$. There exists a neighborhood V_p of p with $u_p(y) > 0$ for $y \in V_p$, because u_p is continuous. By the remark made above, there is a sequence p_i of points of T such that $T \subset \bigcup_i V_{p_i}$, since $T \subset \bigcup_p V_p$.

 u_{p_n} E^n is a linear functional on E^n and so is bounded there. Let us denote its Euclidean norm on E^n by $||u_{p_n}||_n$. Set

$$
u(x) = \sum_{n=1}^{\infty} \frac{u_{p_n}(x)}{2^n \| u_{p_n} \|_n + 1}.
$$

The series converges pointwise for each $x \in X$, since there is a positive integer m with $x \in E^m$, so that $x \in E^i$ for all $i \geq m$. For every $n \geq m$,

$$
\sum_{i=1}^{n} \left| \frac{u_{p_i}(x)}{2^{i} \| u_{p_i} \|_{i} + 1} \right| \leq \sum_{i=1}^{m-1} \frac{|u_{p_i}(x)|}{2^{i} \| u_{p_i} \|_{i} + 1} + \sum_{i=m}^{n} \frac{\| u_{p_i} \|_{i} \| x \|_{i}}{2^{i} \| u_{p_i} \|_{i} + 1} + \sum_{i=m}^{m-1} \frac{\| u_{p_i}(x) \|}{2^{i} \| u_{p_i} \|_{i} + 1} + \sum_{i=m}^{n} \frac{\| x \|}{2^{i}} \left(\| x \|_{i} = \| x \| \right) = \left(\sum_{j=1}^{m} x_j^2 \right)^{1/2} \text{for } i \geq m \right).
$$

234 YAKAR KANNAI

The first term on the right hand of this inequality is a constant for a fixed x , and the second term converges. For every $x \in T$, $u(x) > 0$, since $u_{p}(x) \ge 0$ for all n and there is at least one k with $x \in V_{p_k}$, so that $u_{p_k}(x) > 0$. Thus u is a utility.

From theorems A and B and by the above remarks it follows that (2.6) is both necessary and sufficient in the countable dimensional case.

THEOREM C. If X is a separable normed linear space, \gtrsim is a partial order *on X satisfying* (1.1), (1.2), (2.6) *then there is a (bounded) utility. (This includes the case of* l_p *spaces,* $1 \leq p < \infty$ *.*)

Proof. By a theorem of Klee $(3$ theorem (2.7)]) there is a functional u such that $x \in \overline{S}$ implies $u(x) \ge 0$, and $u(x) > 0$ for $x \in \overline{S}$ and $x \notin -\overline{S}$ (hence $u(x) = 0$ for $x \in \overline{S} \cap (-S)$).

It is easy to see, by the method of proof of theorem A , that (2.6) is also necessary for the existence of a *bounded* utility.

REFERENCES

1. Aumann, R. L, 1962, Utility theory without the completeness axiom, *Econometrica,* 30, 445-462.

2. Hausner, M., 1954, Multidimensional utilities, in *Decision Processes*, edit. by Thrall, Coombs and Davis, John Wiley, New York, pp. 167-180.

- 3. Klee, V. L., 1955, Separation properties of convex cones, *Proc. Amer. Math. Soc.,* 6, 313-318.
- 4. K6the, G., 1960, *Topologische Lineare Riiume,* Springer Verlag.

THE HEBREW UNIVERSITY OF JERUSALEM